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ABSTRACT

Processor hardware has been architected with the assumption that most data access pat-

terns would be linearly spatial in nature. But, most applications involve algorithms that are

designed with optimal efficiency in mind, which results in non-spatial, multi-dimensional data

access. Moreover, this data view or access pattern changes dynamically in different program

phases. This results in a mismatch between the processor hardware’s view of data and the

algorithmic view of data, leading to significant memory access bottlenecks. This variation in

data views is especially more pronounced in applications involving large datasets, leading to sig-

nificantly increased latency and user response times. Previous attempts to tackle this problem

were primarily targeted at execution time optimization. We present a dynamic technique pig-

gybacked on the classical dynamic binary optimization (DBO) to shape the data view for each

program phase differently resulting in program execution time reduction along with reductions

in access energy. Our implementation rearranges non-adjacent data into a contiguous dataview.

It uses wrappers to replace irregular data access patterns with spatially local dataview. HD-

Trans, a runtime dynamic binary optimization framework has been used to perform runtime

instrumentation and dynamic data optimization to achieve this goal. This scheme not only

ensures a reduced program execution time, but also results in lower energy use. Some of the

commonly used benchmarks from the SPEC 2006 suite were profiled to determine irregular data

accesses from procedures which contributed heavily to the overall execution time. Wrappers

built to replace these accesses with spatially adjacent data led to a significant improvement in

the total execution time. On average, 20% reduction in time was achieved along with a 5%

reduction in energy.
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CHAPTER 1. OVERVIEW

This chapter introduces the increased memory latency and execution time problems caused

by non-spatially adjacent data access, some of the applications where this problem is prevalent,

Data Shaping as a solution to deal with this problem and some background on the intricacies

of this issue.

1.1 Introduction

Non-spatial data access has been a leading contributor to memory access latency in most

applications, resulting in increased program execution times and lowered response times. The

primary contribution of this work is the development of an effective approach to reduce the

data access time in most commonly used applications. The negative impacts of non-spatial data

access have been lowered by creating a Dynamic Dataview of spatially adjacent data, which

replaces these irregular data access patterns at runtime. The dynamic binary optimization

capabilities of HDTrans[27][28] have been leveraged to help achieve this goal. This study also

evaluates the performance of three data stores that host the dynamically shaped data - the

Dynamic Data View Array(DDVA), Tagless D-Cache and Scratchpad Memory. This

implementation also helps reduce the energy consumption for data access. The applicability

of this scheme to various common applications in the SPEC2006 benchmark suite[12] were

studied.

The code block in Figure 1.1 is a snippet of a linked list access function, where data of all

nodes are being accessed in a repetitive manner.

Note that the accessed data in the DS0 linked list above has no spatial locality. The

high level meta-wrapper or data-shaper specification proposed in this work could take on a
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/∗ I t e r a t i v e s t r u c t u r e f o r

temporal l o c a l i t y ∗/
for ( i =0; i < k ; i = i +1){

/∗ Linked L i s t data acces s loop ∗/
for ( j =0; j < N; j = j +1){

data = DS0 . data ;

DS0 = DS0 . next ;

}

}

Figure 1.1 Original Code Block with non-spatially adjacent data access

form as shown in Figure 1.2. The wrapper is a small piece of code which transforms the

architecture dependent data view (irregular accesses of Figure 1) into an algorithm amenable

data view (potentially performance and energy optimized accesses) through temporary storage

structures, referred to as the Dynamic Data View Array. In Figure 1.2, a simple linear array

(buf[j]) is used to coalesce data from the structure DS0 and any further reference to DS0 is

piped to the DDVA structure, buf[j]. Accesses to more than one field of complex data structures

could be transformed to one or more DDVA structures.

The following sections introduce the targeted applications and the need for performance

optimization in these scenarios. Also, some background information on significance of properly

exploiting Spatial and Temporal Locality to deliver benefits has been provided. The principles

behind Dynamic Binary Optimization and the predominant frameworks which deliver this

capability have been detailed. A special focus has been placed on detailing the internals of

HDTrans, the Dynamic Binary Optimization framework used in our implementation.

1.2 Targeted Applications

Recent applications are best placed to leverage highly advanced hardware processing capa-

bilities and memory building blocks. They are optimized for multitasking, parallel processing

and extensive computation needs. These applications often have to deal with processing huge

datasets and may also need to generate and store results which tend to be even larger. The
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/∗ Wrapped scope wi th the Data Shaper ∗/
for ( i =0; i < k ; i = i +1){

//DATA WRAPPER

/∗ Temporal Lo ca l i t y − F i r s t Epoch ∗/
i f ( i == 0) {
/∗ Linear i z e or Shape the DS0 data ∗/

for ( j =0; j < N; j = j +1){
buf [ j ] = DS0 . data ;

DS0 = DS0 . next ;

}
}
//END DATA WRAPPER

/∗ Data f ed from Shaped bu f ∗/
for ( j =0; j < N; j = j +1){

data = buf [ j ] ;

}

}

Figure 1.2 Optimized Code Block with Data Shaping and spatially adjacent data access

trend of algorithmic implementation of these applications has been rapidly shifting towards

that of achieving a higher efficiency. In this process, data tends to stored in memory in a

largely non-spatial manner. The performance benefits delivered by this work are demonstrated

in the SPEC2006 suite of applications, including, mcf and h264 ref. This work might also

deliver huge benefits when applied to other common applications with huge data processing

needs, such as those detailed below:

1. IMDB generates and maintains moderately large, real database of movies.

2. Wikimedia maintains Page View statistics with hourly updates for its suite of projects

including Wikibooks, Wiktionary, Wikimedia, Wikipedia mobile, Wikinews, Wikiquote, Wik-

isource, Wikiversity and Mediawiki. This involves maintaining and processing huge datasets

with up-to-date information. The stream is available unsampled as gzipped hourly files from

their website.
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3. The FlightStats database maintains flight on-time arrival data and a host of other re-

lated flight information.

4. Amazon AWS provides Public Data Sets with a large variety of data such as the mapping of

the Human Genome, NASA NEX Earth science datasets, Landsat satellite imagery of all land

on Earth, Common Crawl Corpus composed of over 5 billion web pages and the US Census

data which require hours or days to locate, download, customize and analyze.

5. Weather Underground provides extensive Weather History statistics for numerous cities

worldwide over different times in the past.

6. Wireless sensors generate massive data due to the high resolution sensing requirements in

numerous applications.

7. Scientific simulations too generate large volumes of data due to increased scales and resolu-

tions of simulated domains.

8. The North American electric power grid operations generate 15 Tera Bytes data per year.

9. Social networking sites such as Facebook capture and store Peta Bytes of heterogeneous

information.

10. Google sorts through 20 Peta Bytes everyday.

11. The Large Hadron Collider(LHC) at the Center for European Nuclear Research(CERN)

generates raw data at a rate of 2 Peta Bytes per second starting from 2008.

12. The Large Synoptic Survey Telescope will generate several Peta Bytes of new image and

catalog data every year. The Square Kilometer Array will generate about 200 Giga Bytes

of raw data per second that will require Peta Flops (or possibly Exa Flops) of processing to

produce detailed radio maps of the sky.

1.3 Problem Statement

Hardware implementation tends to be much simpler for a linear layout of address spaces. It

is for this reason that most commercial processors have a spatially linear view of data. Applica-

tions, on the other hand, involve extensive use of optimal algorithms, tailor-made for program

efficiency. This often results in a spatially non-adjacent view of data from the application. This

mismatch between the processor’s view of data and the algorithm’s view of data results in sev-



www.manaraa.com

5

eral performance bottlenecks such as an increased memory access latency, increased program

execution times, increased memory bandwidth between various levels of the memory hierarchy

and greater power consumed for each data access. This performance loss is much more obvious

in emerging applications, due to a magnified mismatch resulting from the highly non-spatial

algorithmic data views.

There have been several attempts in the research community to address the pressing needs

of this problem. Even though some of these approaches claim to be successful in reducing

memory access latency and execution time, they introduce unintended increases in memory

bandwidth and energy use. They also add additional overheads since these techniques are not

dynamic.

1.4 Background and Significance

The following subsections discuss in detail the significance of Spatial and Temporal Locality

in helping reduce access latencies, Dynamic Binary Optimization as an approach to address

these issues, some of the most commonly used Dynamic Binary Optimization frameworks (Dy-

namoRIO, QEMU, Pin, Valgrind and HDTrans) and the internals of the HDTrans framework

as used in our implementation.

1.4.1 Spatial and Temporal Locality

The two classical attributes of data represented as linear memory mapped data views are

spatial locality and temporal locality. Spatial locality refers to the program property that if

the data at address A is accessed now (at time T), data in its spatial neighborhood (addresses

in the range A - e to A + e) is likely to be accessed in the near future (within time range T

to T + t). Temporal locality states that if data at address A is accessed at time T (now), it

is likely to be accessed again in near future (between time T and time T + t). Such locality

allows a processor to pay 40-100 cycle cost for a data item to fetch it from memory the first

time it is seen. However, all future accesses resulting from temporal locality end up costing

just one to two cycles if the data item is cached on the on-chip L1 cache on the first access.

Data is fetched into L1 cache in a chunk of multiple data items, called a cache block in order
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to amortize the costs of multiple accesses. Hence, when we bring in the data item at address

A, we also bring in data items at address A+1, A+2, ..., A+k for block size k+1. If a program

exhibits spatial locality then the one-time cost of 40-100 cycles for access to the data item at

address A is amortized over k+1 items.

Assume that memory costs 100 cycles, L1-cache access takes 1 cycle, and block size equal

to 8 data items. Fetching 8 data items without any locality costs 800 cycles at 100 cycles per

data item. However, spatial locality reduces the cost to 107 cycles at 13 cycles per data item.

If each data item is used 9 more times in the near future after the first fetch - a property of

temporal locality, then the average access time goes down to 11 cycles per fetch from 100 cycles

per fetch.

The memory bandwidth has always been a show-stopper in computer architecture - hence

the popular term memory wall. Exploitation of locality is the primary mechanism to overcome

the memory wall. Dynamic data shaping takes this a step further and rearranges data along a

view ideal for the current program context. This helps speed up the program execution by a

factor of 10 or more. Platform independence of these optimizations makes them very appealing

for performance enhancement.

1.4.2 Dynamic Binary Optimization

Binary Translation (BT) is a technique to convert binaries available in one ISA into another

ISA[17]. A widely used sub-category of Binary Translation is Binary Instrumentation, which

is a special technique to observe a binary’s behavior by inserting probes into it. Some of the

most common applications of Binary Translation are in profiling program performance, branch

or memory trace generation, protection, emulation and debugging. Some Binary translators

like QEMU[5] and Shade[11] offer the advantage of fast emulation. Many binary translators

specialize in migrating the binary from one architecture to another. IA-32EL[4] translates

IA-32 code to IA-64 code. There are also some binary translators which perform same ISA

translation to help in virtualization, as in the case of VMware GSX, and in optimization, as in

the case of Dynamo[3] and Adore[20]. DBT (Dynamic Binary Translation) based tools can be

further classified based on their underlying architecture. They may either be Instrumentation
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based, Migration based, Fast Emulation based or Dynamic Optimization based. PIN[21] and

DynamoRIO[6] are some Instrumentation-based DBT tools. IA32EL is a Migration-based DBT

tool. QEMU and Shade are Fast Emulation based tools. Dynamo[3], HDTrans and Adore are

Dynamic Optimization based tools.

Binary Translation can either be static or dynamic. Static BT (Static Binary Translation)[17]

performs interpretation, which happens one instruction at-a-time. Dynamic BT or Dynamic

Binary Optimization (DBO)[17] is optimized for repeated instruction execution one block-at-

a-time. Static BT translates once, runs many times and allows aggressive code optimizations.

But it is less adopted due to Code discovery problems. DBO is more widely adopted since their

implementation techniques are efficient and well understood. Dynamic Binary Optimization

(DBO) performs dynamic translation and execution of application binaries by actively carrying

out runtime code instrumentation. The entire program is divided into basic blocks, with each

basic block delimited by a conditional statement. DBO maintains a code cache where each

basic block is copied into, before the DBO framework performs the required instrumentation

and then executes it. The DBO system ensures that only translated code from the code cache

is executed. Indirect branches may form part of some control flows, and these can’t be resolved

statically. So the DBO system is invoked to handle such scenarios. The DBO system ensures

that the code cache contains the branch destination. The DBO system also forms a longer trace

by merging the most frequently executed basic blocks together. This arrangement helps reduce

runtime overheads by ensuring that the most common hot paths are executed completely from

the code cache without invoking the DBO system.

DBO helps improve performance with optimization and profile-directed feedback hidden

from the user. DBO also ensures compatibility with legacy architectures by making Architec-

ture a Layer of Software. The software translator translates once and saves in memory. This

reduces hardware complexity and power use. Also, no changes are needed in existing code

while using DBO. DBO is very reliable and helps to work around some hardware bugs. DBO

makes best use of available runtime profile information and post-link-time program informa-

tion. Static optimization only emulates a single source architecture, while DBO can emulate

multiple source architectures.
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DBO tools also maintain metadata which helps analyze the state of memory locations during

program execution[24]. Some of the benefits delivered using this metadata include, identifying

if a memory location is allocated, if it contains secure data, or the number of times it has been

accessed. The granularity and size of metadata varies vastly from one tool to another. The

huge variations in granularity of instrumentation information maintained may range from a

coarse granularity at a function-level, page-level, or object-level, in some tools, or at a basic

block, word, or even bit-level granularity in other tools. Separate memory regions are used

for metadata allocations to avoid interference with the data layout assumed by the original

program[10]. Whenever the program code operates on data, the DBO tools would insert code

that executes the right operations on the corresponding metadata to ensure accuracy. The

exact length of the inserted code may vary from one tool to another.

There are numerous benefits to Dynamic Binary Optimization, as detailed in [17] and [1]:

1. Legacy code where source is unavailable can be optimized.

2. Dynamic Optimization still helps maintain high code quality.

3. DBO is not limited in optimization scope. It can cross boundaries across Indirect Calls,

Function Returns, Shared Libraries and System Calls.

4. Translated basic blocks can be layed out contiguously in order they are naturally visited.

This helps ICache Performance.

5. DBO is also compatible between VLIWs of different sizes and generations.

6. DBOs are easily upgradable. If better compiler algorithms are found, only a software patch

is needed to install them. Also, future architectural improvements are transparent to the user.

7. DBO is very reliable. If a bug is found in dynamic translator, a software patch is sufficient

to fix it. Also, some hardware bugs can be worked around by the translator.

8. DBO also helps in attaining High Chip Yield since it is a software based approach and not

hardware based. Smaller chips with higher yield can be realized.

9. DBO helps keep the Hardware Simple and Fast. Intelligence is in software, allowing simple

in-order implementations.

10. DBO offers a Wide scope for ILP. It can look at arbitrarily long fragments of code.

11. Ability to detect and optimize program phases.
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As with any approach, there are some minor setbacks with Dynamic Binary Optimization,

as briefly discussed in [17] and [1] and detailed below:

1. High level semantic information (such as exceptions) may not be available.

2. Takes away cycles from program. This is because DBO takes memory and resources from the

emulated machine. DBO is especially slow at start. So there are potential realtime difficulties.

3. Debugging can be difficult since the Target machine code is several times removed from

source code and the behavior can be non-deterministic in a real system.

4. Even virtual machines can be emulated in static optimization, while only real machines can

be emulated using DBO.

5. Static optimization can be done at the Full System level, while DBO is a User based ap-

proach.

6. Static optimization is OS Independent, while DBO is OS Dependent.

7. Also, the target architecture should have hardware support for frequently used features

of each legacy architecture such as opcodes, Condition code registers, Floating point formats,

Timer registers, Segment registers and Address translation.

8. Slow translators and interpreters require high code reuse to amortize the time they take.

9. Large caches in these translators allow more code reuse at the cost of memory and lower

adaptability to code changes.

Some of the most commonly used DBO tools have been described in greater detail in the

following sections.

1.4.2.1 DynamoRIO

DynamoRIO builds basic blocks of the target application, and then translates each basic

block on demand into the code cache. It then links the translated blocks together. This activity

happens in parallel with that of their original counterparts in order to replicate the original

control flow within the cache. Incremental updates happen at the code cache as new blocks of

the target application are executed. This happens until the application runs entirely within the
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cached copy. In particular, indirect branches are especially well handled by the DynamoRIO.

The many targets of an indirect branch are specified by addresses in the memory space of an

application. The addresses of the branch targets in DynamoRIO would always reference the

memory-untranslated code of the original application outside the code cache. This is because

the data flow of the target application is identical to the native run. DynamoRIO has a lookup

routine within its code cache that helps find the translated code fragment corresponding to

a branch target. Indirect branches are redirected to this lookup routine where they find the

translated code fragment to make a jump to, thereby avoiding execution from returning to the

original application.

1.4.2.2 QEMU

QEMU detects code changes on the page by performing code translation using one of two

available strategies. In the the first strategy, QEMU marks the page as read-only and then

handles the fault as if it were a write event. This strategy is very similar to that employed by

DynamoRIO. In the second strategy, QEMU makes use of the QEMU softmmu layer’s software

TLB to effectively map the guest page table to the host page table. QEMU uses this softmmu

layer to translate targets in a guest write to a page of memory to that of the corresponding

host page. Also, this translation point can be configured to trap into QEMU for code change

handling.

1.4.2.3 Pin

Pin translates all code into traces. Pin instruments the heads of traces containing dy-

namically generated instructions to check if any of those instructions have changed. Pin also

efficiently handles situations where executable permissions are removed from pages contain-

ing Dynamically Generated Code. Pin would invalidate all traces containing code fragments

translated from such pages. Pin is an optimal tool when used during periods of frequent code

generation when compared to other tools that instrument every store. This is because, traces

will be executed much less frequently than stores. But, Pin is disadvantageous for scenarios

where the JIT engine is dormant and the generated traces are repeatedly executed as the cost
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increases dramatically. This is because, instrumented checks rarely discover code changes and

are executed far more often than stores. DynamoRIO and QEMU are susceptible to the con-

current writer problem, since they rely on detecting code changes at the time of write. Pin

avoids this pitfall since it relies on detecting code changes at the time the translated traces are

executed. Thus, individual traces can be selectively flushed from the code cache while using

Pin.

1.4.2.4 Valgrind

Valgrind synchronizes its code cache with dynamically generated code using two strategies.

The first strategy instruments every dynamically generated basic block with a check for modified

code. This strategy is very similar to that of Pin’s. The second strategy is more efficient and

involves compiling the target application with a source code annotation that is translated into a

code cache flush event. But the relatively higher efficiency of the second strategy does not lead

to significant improvements in performance. This is because, there is a massive slowdown in

Valgrind’s translation of basic blocks through a three-value IR. For maintaining compatibility,

DynamoRIO implements some of Valgrind’s annotations.

1.4.2.5 HDTrans

HDTrans[27][28] performs IA-32 to IA-32 binary translation with very simple and effective

translation techniques. It is a very lightweight system and also uses established optimizations

such as trace linearization and code caching. HDTrans is the Dynamic Binary Optimization

framework used in our implementation primarily due to its modularity, simplicity, resource-

fulness and open-source nature . HDTrans executes in a coroutine fashion with the binary

image of the application to be translated. It maintains basic blocks, which are a sequence

of straight-line instructions bracketed by branches. These blocks are translated into a Basic

Block Cache(BBCache). HDTrans also maintains a directory of all such translated basic blocks

indexed by source program counter. The HDTrans system doesn’t remove translated basic

blocks from the BBCache. The BBCache and the translation directory are discarded only

in scenarios where the BBCache becomes full. The translation process starts over when this
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happens. Other existing translators follow a complex translation strategy with intermediate

code generation, trace optimizations and register reallocation. In these translators, most of the

execution time is spent in the code cache, thereby reducing the benefits gained from translation

significantly. HDTrans avoids these pitfalls by avoiding intermediate code generation, target

code optimization and register re-allocation. HDTrans performs efficient register management

and maintains a small cache footprint.

The HDTrans translator is table-driven to reduce the overall cache footprint. The rules

for decoding each instruction and the emitter function to be used in each case are maintained

in this table. Each entry in the table occupies a single cache line, and a maximum of three

entries are visited for every instruction decoded[27]. Instrumentation may not be explicitly

needed in some scenarios. In these cases, most of the instructions are translated by copying

them without alterations into the BBCache. The translator needs to remain in control of

the application in scenarios involving instructions with control flows. HDTrans has dedicated

routines which ensure that such scenarios are appropriately handled. HDTrans ensures that all

dynamically active basic blocks are translated as execution proceeds and a steady state is arrived

at. HDTrans significantly reduces the overall cost of translation, even though instrumentation

is restricted to one instruction at a time. HDTrans performs trace linearization, but doesn’t

support any other target code cache optimization schemes. This is in direct contrast to the

several optimizations done by Pin. Pin performs optimization of the instrumentation code and

also supports several other sophisticated run time optimizations.

Some of the architectural features of HDTrans are explained in greater detail in the following

section.

1.4.3 HDTrans - Architectural Overview

HDTrans performs simple translation, yet achieves satisfactory performance. HDTrans

emits code that is competitive with the best existing translators, but has significantly lower

startup and translation overheads. The architectural features of HDTrans that help in handling

different branching schemes and program flows have been summarized in this section, as detailed

in [27] and [28].



www.manaraa.com

13

1.4.3.1 Direct Branches

Whenever HDTrans encounters direct branches, it seeks to maximize the re-use of translated

basic blocks. HDTrans linearizes conditional branches assuming that the branch is not taken.

It the destination is already translated, it emits a jump to it. Otherwise, HDTrans follows

unconditional jump targets and later elides the jump. It doesn’t follow call targets and keeps

translating past the call instruction. For conditional jumps, the control flow branches to an

exit stub and fixup occurs later. HDTrans records the destination as a new basic block in its

basic block directory.

1.4.3.2 Indirect Branches

In the case of indirect branches, the destination is not known until runtime. HDTrans uses

a hash table called the sieve to search for the translated destination. The hash is based on

the untranslated destination address and uses 215 buckets. The Sieve is implemented as blocks

of code rather than blocks of data. This helps reduce register pressure and prevents D-cache

pollution. Also, HDTrans also doesn’t inline most frequently used destinations.

1.4.3.3 Return

The Return is the most important indirect branch in terms of dynamic frequency. Stack

introspection is a huge problem associated with returns. So, HDTrans uses a Return Cache to

deal with these problems. The Return Cache is a fixed size D-space direct-mapped hash table

of BBcache (Basic Block Cache) addresses. It is indexed by the untranslated start address of

the returning procedure. The Return Cache is very small in size and uses only 28 buckets.

1.4.3.4 Multi-threading

HDTrans features Inter-thread translation sharing since the variance of multiple threads

existing across application domains is very high. The various versions of HDTrans adopted

different design trade-offs between memory consumption and simplicity. The latest version of

HDTrans, as used in this implementation favors simplicity, with each thread having its own

BBcache (Basic Block cache) and machine state. So, there is no need to deal with thread
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interference during BBcache flush. There is also no measurable degradation in performance

when compared to the single threaded version.

1.4.3.5 Signal Handling

Using HDTrans, signals are treated as threads of execution scheduled at the point of arrival.

Each signal thread is run in its own BBCache and machine context. This signal handling

support doesn’t place any additional overhead on the HDTrans translator. Also, HDTrans

doesn’t support introspective signals.

1.4.3.6 Hybrid Translation

HDTrans incorporates Hybrid Translation in its internal engine. It uses static translation

to avert run-time translation overhead and high startup costs. It translates as many blocks as

possible statically. So, the overhead of the dynamic translator is reduced to indirect branch

overhead. An overwhelming majority of dynamically executed basic blocks are identified using

efficient disassembly techniques.

1.4.4 Memory Organization

An understanding of memory organization is essential to analyze the source of increased

latency and data access energy across applications. This section discusses memory organization

in an elaborate manner, as seen from a multi-core processor’s perspective. Figure 1.3 provides

a high level representation of the memory hierarchy in a multi-core processor.

The following sections describe the various components of the memory hierarchy in a de-

tailed manner.

1.4.4.1 Registers

Processor Registers account for a small amount of memory that can be accessed faster than

other sources in the memory hierarchy. Almost all processors load data from a larger memory

into registers, where it is used for arithmetic computation as part of machine instructions. Ma-

nipulated data is then stored back into Main Memory. Modern processors also have duplicates
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Figure 1.3 High-Level Memory Organization in a Multi-core Processor

of these architectural registers in order to improve performance through register renaming, al-

lowing parallel and speculative execution. Also, most frequently used data is held in registers

to improve performance. The number of registers available on a processor and the operations

that can be performed using those registers has a significant impact on the efficiency of code

generated by optimizing compilers. The widely used Intel x86 processors have 8 General Pur-

pose Registers in 32-bit mode and 16 registers in 64-bit mode. The Intel Xeon Phi processor

has 16 registers, while the Intel Itanium processor has 128 registers.

There are different kinds of registers - User Accessible and Internal, depending on the con-

tent stored in them or the instructions that operate on them. User accessible registers can be

read or written by machine instructions. They are classified into Data registers, Address regis-

ters, General purpose registers (GPRs), Conditional registers, Floating point registers (FPRs),

Constant registers, Vector registers, Special purpose registers (SPRs), Model-specific registers

and Memory Type Range Registers (MTRRs). Internal registers are classified into Instruc-

tion registers and Registers related to fetching information from RAM. The RAM registers are
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further classified into Memory buffer registers (MBR), Memory Data Registers (MDR) and

Memory Address Registers (MAR).

1.4.4.2 Caches
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Figure 1.4 High-Level Cache Architecture

Caches are used by a processor to reduce the average time to access data from the main

memory. The cache is a smaller, faster memory which stores copies of the data from frequently

used main memory locations. Most processors have independent instruction and data caches,

where the data cache is usually organized as a hierarchy of more cache levels. Data is transferred

between the main memory and cache in blocks of fixed size, called cache lines. A cache entry is
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created when a cache line is copied from main memory. Each cache entry will have the copied

data as well as a memory location tag. Whenever a cache hit occurs, the processor immediately

reads or writes data in the cache line. Whenever a cache miss occurs, the cache allocates a new

entry and copies in data from the main memory, before fulfilling the request. On a cache miss,

the Least-Recently Used (LRU) heuristic is commonly used to evict an existing cache entry to

make room for a new entry. A set of cache entries are grouped together to form cache ways,

which decide the Associativity of the cache. Caches follow different write policies to determine

when data is written to main memory from the cache. In a write-through cache, each write to

the cache causes a write to main memory. In a write-back cache, writes are not immediately

passed over to main memory, and are marked as dirty. The data in these locations is written

back to main memory only when it is evicted from the cache. In the case of multiprocessor

systems, some cache coherence protocols are used to avoid stale data from being maintained in

caches associated with different processors.

The high-level architecture of a cache is very similar to that shown in Figure 1.4. During

a cache access, an index is used to find an entry in the cache’s data store, and then the tags

for the cache line found are compared.

The Associativity of a cache level is also used along with the replacement policy in deciding

the cache location where a main memory entry would be stored. The cache is Fully Associative

if the replacement policy is free to choose any entry in the cache to hold the copy. The cache

is Directly Mapped if each entry from the main memory can go in just one place in the cache.

An N-way Set Associative cache is a compromise in which each entry from main memory can

go to any of N places in the cache. Associativity increases beyond four-way have much less

effect on the hit rate.

Multiple levels of caches are needed, because, larger caches have better hit rates but longer

latency. Multi-level caches usually operate by checking the fastest L1 cache first. It that misses,

the next fastest L2 cache is checked, and so on, before external memory is checked.
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Figure 1.5 High-Level TLB Architecture

1.4.4.3 Translation Lookaside Buffer (TLB)

The Translation Lookaside Buffer (TLB) is a cache that is used to improve the virtual

address translation speed. The TLB is frequently implemented as Content Addressable Memory

(CAM), where the search key is the virtual address and the search result is a physical address.

A TLB hit occurs when the requested address is present in the TLB, and the retrieved physical

address can be used to access memory. A TLB miss occurs when the requested address is not

in the TLB, and the translation proceeds by looking up a page table in a process called Page

Walk. The Page Walk process involves computing the physical address, and then entering
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the virtual to physical address mapping in the TLB. The Page Table keeps track of where

the virtual pages are stored in physical memory. The TLB is a cache of the Page Table and

only a subset of the Page Table contents are held there. In a Harvard Architecture, separate

virtual address spaces may exist for both instructions and data. This leads to the need for

a distinct Instruction Translation Lookaside Buffer (ITLB) and a Data Translation Lookaside

Buffer (DTLB). Similar to caches, TLBs may also have multiple levels.

Figure 1.5 shows the architecture of a common TLB.

1.4.4.4 Main Memory(DRAM)

Main Memory is directly or indirectly connected to the Central Processing Unit through

a pair of memory buses - an address bus and a data bus. The CPU sends a memory address

through an address bus and then reads or writes data in memory through the data bus. A

Memory Management Unit (MMU) recalculates the actual memory address to provide an

abstraction of virtual memory. The DRAM stores each bit of data in a separate capacitor

within an integrated circuit. DRAM consumes relatively large amounts of power and has long

access times compared to registers and caches.

1.5 Thesis Organization

The remainder of this thesis builds upon the core ideas introduced in this chapter. Chapter

2 highlights some related work to deal with some of the problems discussed here. Chapter

3 provides more details on the Design and Implementation of our scheme and also features

an in-depth discussion on the various phases involved in this work. Chapter 4 showcases the

performance evaluation framework and some results obtained while using scheme. Chapter 5

summarizes the benefits observed and some future work in this direction.
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CHAPTER 2. REVIEW OF LITERATURE

This chapter presents some related work targeted towards dealing with some of the problems

introduced in the previous chapter.

2.1 Introduction

Our methodology differs from prefetching based techniques in the following way. Prefetching

populates the cache with unnecessary data for large structures in which only few fields are

accessed repeatedly. This is expensive in both performance and energy. Bandwidth between

the main memory and cache has become a very critical resource for multi-core computing

architectures. The DDVA structure which can also be cached reduces the strain on memory

bandwidth by only tracking data structure fields which are used. Prefetching can be used in

conjunction with DDVA to trigger fetches to DDVA structures rather than the original data

structure. We investigate the performance and energy advantage of DDVA in this work for the

SPEC 2006 suite. The next few sections introduce some related work, which target objectives

similar to ours.

2.2 Related Work

Our Data Shaping approach seeks to reduce execution time and energy by dynamically emit-

ting spatially-adjacent data from runtime data stores. Earlier work focused on overlapping data

access with computation by introducing newer software-based cache designs for non-blocking,

prefetching, identifying and storing frequent instructions, and also for managing spatial and

temporal locality through independent parts. Some techniques were aimed at optimizing spe-

cific data structures in pointer-based recursive applications and in those with array references.
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Code transformations, runtime data and iteration reordering-transformations and some inter-

leaving schemes to reduce DRAM row-buffer conflicts were also targeted in other related work.

Even though some of these approaches may be successful in reducing memory access latency

and execution time, they fail to address the relatively high energy use of these applications.

The following sub-sections discuss some selected related work in an elaborate manner.

2.2.1 Non-blocking and Prefetching Caches

Non-blocking caches and prefetching caches[7] are two techniques for hiding memory latency

by exploiting the overlap of processor computations with data accesses. A non-blocking cache

allows execution to proceed concurrently with cache misses as long as dependency constraints

are observed, thus exploiting post-miss operations. A prefetching cache generates prefetch

requests to bring data in the cache before it is actually needed, thus allowing overlap with

pre-miss computations. There are also some hybrid approaches that combine the benefits of

both these schemes.

2.2.2 Array Cache

A software driven cache design, called the Array Cache[9] was also proposed . It uses

a separate cache space to store and handle array references with constant strides that are

prefetched accurately with the help of the compiler and with extremely low runtime overhead.

This design was primarily targeted towards scientific computation applications, where most of

the data references are array references with constant strides.

2.2.3 Register Preloading

Register preloading[8], incorporates a set of hardware and software techniques to effectively

tolerate long first level memory access latency. The techniques include speculative execution,

loop unrolling, dynamic memory disambiguation, and strip-mining. This approach claims to

provide excellent tolerance to first level memory access latency up to 16 cycles for an issue in

a 4 node processor.
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2.2.4 Code Transformation & Compiler-based Solutions

Another work, as described in [25] proposes code transformations to increase parallelism in

the memory system by overlapping multiple read misses within the same instruction window,

while preserving cache locality. This approach claims to deliver execution time reductions

averaging 20% in a multiprocessor and 30% in a uniprocessor due to significant increases in

memory parallelism. A runtime approach to improve computation and data locality in irregular

programs based on the inspector-executor method used by Saltz has been proposed in [13]. This

work improves computation and data locality, and also eliminates most of the runtime overhead.

A compile-time framework that allows run-time data and iteration reordering transformations

has been proposed in [29] to enhance locality in applications with sparse data structures.

2.2.5 Pointer-based Prefetching

A software controlled prefetching scheme targeted towards pointer-based applications with

recursive data structures has been been proposed in [22]. This method claims to help achieve

a 45% improvement in execution time. A HotSpot instruction cache has been proposed in

[30] that identifies frequently accessed instructions dynamically and stores them in the smaller

L0 cache. This approach helps achieve a 52% reduction in instruction cache energy without

performance degradation.

2.2.6 Dual Data Cache

A new cache organization, called the Dual Data Cache has been proposed in [14], with

independent parts for managing spatial and temporal locality. This work also implements a

lazy caching scheme, to cache data only when benefits are realized. It also maintains a locality

prediction table, with information about the most recently executed load/store instructions.

2.2.7 Zero Cycle Load

A hardware assisted mechanism that reduces the latency of load instructions has been

provided in [2]. This approach, called zero cycle load, helps complete load instructions upto

two cycles earlier than traditional pipeline designs. So a result is produced prior to reaching the
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execute stage of the pipeline, allowing subsequent dependent instructions to proceed unfettered

by load dependencies.

2.2.8 Prediction-based Prefetching

A predictive approach has been employed to reduce File System Latency in [16]. This

method uses past file accesses to predict future file system requests and prefetches data prior

to the request for data, masking access latencies. This method claims to deliver a 280%

improvement in access latency over LRU and also a 50% reduction in cache size.

2.2.9 Integrated Prefetch & Cache Memory Controllers

Another implementation in [19] integrates a prefetch unit with the L2 cache and memory

controllers to address the issue of slow DRAM accesses. It issues prefetch requests only when

the channels are idle, prioritizes them to maximize DRAM row buffer hits and gives them low

replacement priority. This method helps achieve an average of 43% speedup.

2.2.10 Page Interleaving Schemes

DRAM row-buffer conflicts are another important reason leading to a high memory access

latency. A permutation-based page interleaving scheme that reduces row-buffer conflicts and

exploits data access locality in the row-buffer has been proposed in [31]. This approach helps

reduce the memory stall times 68% and 50% compared with conventional cache line and page

interleaving schemes, respectively.
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CHAPTER 3. DESIGN AND IMPLEMENTATION

This chapter details the various phases involved in the Design and Implementation of this

work. The following sections present an in-depth discussion on Profiling, Architecture, Data

Shaping, DBO Framework Integration and the Performance Evaluation Framework.

3.1 Introduction

Our work involves identifying procedures in benchmarks with significant non-spatially ad-

jacent data access and with notable contributions to overall execution time, integrating the

HDTrans dynamic binary optimization framework with the targeted applications and building

a contiguous dynamic dataview of such non-spatial data. Significant efforts were also channeled

towards modeling the performance of three efficient data stores (the Dynamic Data View Array

- DDVA, Tagless D-Cache and Scratchpad Memory) and building performance analysis frame-

works for measuring execution time and energy for data accesses. These phases are outlined at

the high level in Table 3.1.

The later sections describe these phases in more detail.

3.2 Profiling

The preliminary phase of our work involved rigorous efforts towards profiling various ap-

plications of the SPEC2006 benchmark suite and identifying procedures or functions with a

significant amount of non-spatially adjacent memory access involved in their computation. It

was also ensured that the target functions chosen had contributed significantly to the overall

execution time of the application, so that noticeable increases in overall performance can be

observed by subjecting them to the data shaping process. It was also ensured that gcc-based ap-
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Table 3.1 Phases involved in the design and implementation of data shapers

Phase Implementation Activities

Profiling SPEC2006 benchmarks were profiled to identify procedures

with non-spatial data access and those which contribute sig-

nificantly to the overall execution time.

DBO Framework Integra-

tion

The HDTrans Dynamic Binary Optimization framework was

integrated with the selected benchmarks to enable basic

block creation and program optimization at runtime.

Data Shaping A Dynamic Data View Array(DDVA) was created to cache

frequently accessed non-spatial data to emit spatially adja-

cent data replacing irregular access patterns at runtime.

Performance Evaluation

Framework

An evaluation framework that provides an effective measure

of execution time and data access energy for the original and

data shaped benchmarks was designed.

plications were chosen, to avoid any possible compatibility issues with the gcc-targeted dynamic

binary optimization framework, HDTrans, used in our implementation. gprof[15], a widely used

linux-based profiling tool was utilized to profile various applications from the benchmark suite.

gprof provides elaborate information on the percentage contributions of various procedures to

the overall execution time, along with the individual time that each procedure had run for.

After extensive profiling and analysis for non-spatially adjacent data access, the mcf and

h264 ref benchmarks were shortlisted to be targeted for optimization using our data shaping

approach. More elaborate information on the chosen benchmarks, along with their targeted

procedures, and their contribution to the overall execution time is detailed in Table 3.2.

Table 3.2 SPEC2006 benchmarks profiled for non-spatial data access and execution time

Benchmark Target Procedure
Overall Execution Time

Call Count

% Contri-

bution

Contribution

in seconds

mcf primal bea mpp 65.39 3.76 118647

h264ref SATD 4.76 9.49 89478825
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3.3 Overall Architecture

The overall architecture used in our implementation in conjunction with Dynamic Binary

Optimization is as shown in Figure 3.1. Our implementation evaluates three models, namely,

the Dynamic Data View Array (DDVA), Tagless D-Cache and Scratchpad memory. All of these

three models ensure that the original architectural storage locations do not change.

Registers

I-TLB L1 I-Cache L1 D-Cache D-TLB

L2-Cache

Registers

I-TLB L1 I-Cache L1 D-Cache D-TLB

L2-Cache

L3-Cache (LLC)
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Figure 3.1 Overall Architecture used in the Data Shaper implementation

3.3.1 Dynamic Data View Array

We introduce a new data structure called the Dynamic Data View Array (DDVA), which

stores data in a linearly spatial manner. The DDVA caches frequently accessed data views.

Addresses in the wrapped block of code are patched to point to DDVA for future access. The

index into the DDVA will be stored in the wrapper state when the wrapper engine decides to

allocate a DDVA for a wrapped code. The wrapped code block in Figure 3.2 generates data

access addresses Ai1 , Ai2 , ....., AiN referred to as the algorithmic data view, which may have

no spatial locality. A cache line fetched to service a cache miss for address, Aij, may incur
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Figure 3.2 DDVA - Algorithmic data view to Linear data view mapping

energy costs of tag access and also energy cost of wasted data bandwidth since only a fraction

of the data in the cache line may be accessed due to lack of spatial locality. The DDVA in

figure 3.2 is a mapping from the algorithmic data view to a dynamic linear data view where

the addresses Ai1 , Ai2 , ....., AiN are mapped to linear addresses LA0, LA1, LA2, ....., LAN using

an array in the wrapper code. This implementation models these dynamic data views using

linear array accesses to enforce spatial locality in an otherwise poor spatial data access pattern.

Data access instructions in the wrapped code are modified to access data from the DDVA and

emitted into the basic block code cache. Note that although DDVA is mapped in main memory

address space, it can be cached through cache hierarchy levels in the transparent manner.

3.3.2 Tagless D-Cache

Our implementation also models a Tagless D-Cache to serve as a source of spatially adjacent

data. This implementation is loosely based on a similar approach targeting instruction fetch

from a tagless I-cache, as detailed in [18]. This method sought to deal with spatially non-

adjacent instruction references by replacing these with tagless I-cache references. So, a tagless

D-cache design can be found to be similarly effective in dealing with non-spatially adjacent data
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references. Tagless cache design for data reduces cache tag comparison energy by exploiting

spatial and temporal locality of accesses. Data access locality at basic block granularity can

be profiled and frequently accessed basic blocks are aggregated into specially marked pages.

Data in such pages can be accessed with out tag comparison in D-cache, thus reducing energy

consumption. This D-cache approach for data accesses reduces the L1 cache access energy

significantly.

The Tagless data cache (TDC) models these dynamic data views using linear array accesses

to enforce spatial locality in an otherwise poor spatial data access pattern. The wrapper state

is modified to include a pointer to index into the TDC as shown in Figure 3.3. Data access

instructions in the wrapped code are modified to access data from TDC and emitted into the

basic block code cache. Architecturally, some banks of the cache can be flagged to be tagless.

The cache controller then knows that the address mapping of the entire bank is guaranteed to

contain a single address prefix (tag). The access time of such a bank is no different than the

tagged cache access, but it consumes less energy. We maintain a virtual time counter to count

the access time of these accesses based on a Cacti reported model.

3.3.3 Scratchpad Memory

Scratchpad Memory(SPM) is a high speed local memory store used for temporary storage

and rapid retrieval of data. SPM is similar to the L1 cache, as it is the next closest memory

to the ALU after the processor registers. Scratchpads don’t contain a copy of data stored in

the Main Memory and have Non Uniform Memory access latency. Scratchpads are explicitly

manipulated by applications and are employed for simplification of caching logic.

In this implementation, Scratchpad Memory provides quick data access times and also

reduces data access energy. Scratchpad sizes of upto 1 kB can be supported in this implemen-

tation for data access without overheads. Once again, a virtual counter maintains the access

times for all scratchpad data view accesses based on a Cacti derived model. Note that in re-

ality, these stores - tagless cache and scratchpad are maintained within main memory within

our DBO environment. However, energy and time for these accesses is modeled as if they were

implemented architecturally.
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Figure 3.3 Wrapper code state - Pointer into the tagless data cache (TDC)

3.4 Data Shaping

Data Shaping involves replacing frequently accessed non-spatially adjacent data with data

from a dynamically-built spatial dataview, the DDVA, at runtime. This is achieved by identi-

fying such non-spatial data access regions in the target procedure and placing special wrapped

region function calls around them to make the HDTrans system aware of the data access in-

structions to be replaced at runtime. A linear spatially-adjacent dataview which copies over the

non-spatially accessed data is defined between a set of wrapper region function calls. Frequently,

this wrapper region region also incorporates the alternative logic to replace the wrapped region

logic with. These are in the form of x86 instruction opcodes to be emitted at runtime, since

the code is already in a compiled state when this data access swapping occurs.
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3.5 DBO Framework Integration

The HDTrans Dynamic Binary Optimization environment needs to be setup prior to invok-

ing the wrapper and wrapped region system calls. Once invoked, the HDTrans system remains

active across multiple runs of the resident function. As discussed in the previous sections, HD-

Trans builds basic blocks from straight line code fragments that are separated by conditional

statements. HDTrans maintains all of these basic blocks inside a Basic Block Cache (bbCache).

HDTrans provides APIs to copy over the wrapped code and modify the code, dependent on

the user’s needs. HDTrans also provides dedicated control-transfer system calls, which transfer

control to either the modified wrapped code or to the original unmodified wrapped code, de-

pending on the more efficient flow. Special care needs to be taken while placing absolute jump

instructions and system calls inside the wrapper code. This is because, the jump offsets need

to be relative to the current position inside the bbCache.

3.6 Performance Evaluation Framework

This work also involved designing multiple performance modeling frameworks, to enable

accurate tracking and analysis of time and energy. Using these frameworks, average time and

energy data was collected across multiple runs of the mcf and h264 ref benchmarks for multiple

sets of inputs. These frameworks are described in more detail in the following sections.

3.6.1 Execution Time Framework

The execution time framework is based on the read timer system call[26] belonging to the

PMU library. It internally uses the rdtsc primitive to get the running count of the number

of clock cycles elapsed. The difference in the number of clock cycles was analyzed, both at a

wrapped region granularity, and at an application-level granularity. This difference was used

to compute execution time in terms of the number of seconds taken for a specific processor

frequency.
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3.6.2 Energy Framework

The energy framework is based on the Cacti [23] model of computing the energy consumed

for accessing data referenced from different types of memory for specific cache attributes such

as the Cache size, Block Size and Associativity. Cacti provides an accurate measure of the

energy consumed for accessing the tag and data sections of a cache line. Our Data Shaper

based implementation significantly reduces the need for tag comparisons. The energy needed

for accessing such spatially adjacent data is effectively the same as that taken for accessing the

data section of the cache line. The original benchmark, on the other hand, has much higher

access energy due to significant contributions by both data and tag accesses.
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CHAPTER 4. RESULTS

This chapter furnishes the Execution Time and Access Energy data as observed in the

original and Data-Shaped applications using our Performance Evaluation Framework detailed

in the previous chapter.

4.1 Introduction

The Performance Evaluation Framework was used to capture the execution time and en-

ergy statistics for both the original SPEC2006 benchmarks, as well as those subjected to the

Data Shaping process. The mcf and h264 ref benchmarks correspond well to the requirement

of having significant non-spatially adjacent data access. The behavior of these benchmarks

was studied extensively for varying inputs. The results observed are detailed in the following

sections.

4.2 Execution Time

The execution time performance of the mcf and h264 ref benchmarks before and after the

data shaping process for input datasets of different sizes is as shown in Figures 4.1 and 4.2

respectively. The data shaping was done using a DDVA-based data store. This execution time

was obtained after computing the number of cycles elapsed using the read timer system call

from the PMU library. It can be seen that an average of 20% reduction in execution time was

observed.

Execution Time across the three models of the default Dynamic Data View Array (DDVA),

Tagless D-Cache and Scratchpad Memory (SPM) was modeled for the h264 ref benchmark

for different input dataset sizes as shown in Figure 4.3. This execution time was computed
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from Cacti for each read access from the various data stores and then modeled for the entire

application.
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Figure 4.1 Execution Time Performance for input datasets using the original and data shaped

versions of the mcf benchmark

4.3 Energy Use

The energy performance of the mcf and h264 ref benchmarks before and after the data

shaping process for input datasets of different sizes is as shown in Figures 4.4 and 4.5 respec-

tively. The data shaping was done using a DDVA-based data store. The total dynamic read

energy per access was obtained from Cacti and then used for modeling the benchmark’s energy

performance. It can be seen that an average of 5% reduction in energy was observed.

Access Energy performance across the three models of the default Dynamic Data View

Array (DDVA), Tagless D-Cache and Scratchpad Memory (SPM) was modeled. The access

energy for the h264 ref benchmark for different input dataset sizes is as shown in Figure 4.6.

This overall energy was also computed by using the Cacti read access energy for the various
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Figure 4.2 Execution Time Performance for input datasets using the original and data shaped

versions of the h264 ref benchmark

data stores and then extended to the entire application. It can be observed that the Tagless D-

Cache model had the lowest energy consumption when compared to the DDVA and Scratchpad

Memory. Elimination of tag comparisons and a lower latency in accessing data are the primary

reasons for this reduced energy.

4.4 Evaluation

From Figure 4.1, it can be seen that the Data Shaped version of the mcf benchmark has

a significantly lower execution time compared to the original version, which had significant

non-spatially adjacent data accesses. This improvement in execution time performance can

be attributed to the relatively higher spatial locality introduced by dynamically creating the

DDVA data structure and emitting it in place of the irregular data patterns at runtime. Since

required data is always fetched as part of a bigger sized block, along with adjacent data, their

total resultant access times are lower. It can also be observed that factor of improvement in

execution time is much higher for smaller input data sets when compared to larger inputs. This

is because the degree of spatial locality possessed by these smaller data sets are much higher.
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Figure 4.3 Execution Time Modeling for input datasets using the DDVA, Tagless D-Cache

and Scratchpad Memory for the h264 ref benchmark

We could make similar observations by analyzing Figure 4.2, which gives the execution time

performance of the h264 ref benchmark. It could be observed that the Data Shaped version

of the benchmark has led to significant reduction in execution time compared to the original

application. Also, the performance improvements are constant across the different input data

sizes. This is because, the degree of spatial locality improvements were constant, regardless of

the input size.

Figure 4.3 shows the differences in modeled execution time between the three proposed

data stores - DDVA, Tagless D-Cache and Scratchpad. It can be observed that the DDVA and

Scratchpad have significantly better execution time performance when compared to the Tagless

D-Cache, due to their higher degree of spatial locality. These performance benefits can also be

observed across the three different input data set sizes.
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Figure 4.4 Access Energy for input datasets using the original and data shaped versions of

the mcf benchmark

The Access Energy Performance of the original and data shaped applications of the mcf

benchmark can be studied from Figure 4.4. It can be seen that, a small but significant reduction

in energy can be observed in the data shaped application. This is due to the significantly lower

cache tag comparisons needed in fetching data. It can also be seen that these benefits are

visible across different-sized input datasets as well.

Similar improvements in Access Energy Performance for the Data Shaped Application of

the h264 ref benchmark can be seen in Figure 4.5. Access Energy Performance benefits are

distributed across different-sized input data sets as well.

Figure 4.6 presents the differences in modeled access energy across the three proposed data

stores - DDVA, Tagless D-Cache and Scratchpad. It can be observed that the Tagless D-Cache

has the lowest access energy among the three data stores. This can be traced to the total

elimination of tag comparisons in the Tagless D-Cache. Thus, the Tagless D-Cache retains its

better Access Energy Performance across all sizes of input datasets.
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Figure 4.5 Access Energy for input datasets using the original and data shaped versions of

the h264 ref benchmark
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Figure 4.6 Access Energy Modeling for input datasets using the DDVA, Tagless D-Cache and

Scratchpad Memory for the h264 ref benchmark
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CHAPTER 5. CONCLUSION

This chapter summarizes the targets achieved by this implementation and some possible

future work in this direction.

5.1 Summary

This work has demonstrated the effectiveness of Data Shaping by utilizing data stores

like the DDVA, Tagless D-Cache and Scratchpad Memory to cache the most frequently used

non-spatially adjacent data accesses in a linearly adjacent manner. This process leverages

the benefits of the HDTrans Dynamic Binary Optimization framework to perform efficient

data shaping at runtime. This work has demonstrated significant reductions in execution time

and data access energy in some commonly used SPEC2006 benchmarks. This implementation

effectively eliminates the shortcomings of non-spatial data access by replacing such patterns

in hotspots of applications with spatially adjacent data from the modeled data stores built

at runtime. Execution time improvements by 20% and access energy improvements by 5%

illustrate the efficiency of this approach over earlier work. This implementation would be very

valuable in scenarios where runtime optimization is needed without adding any additional static

overheads.

5.2 Future Work

Future work could involve building a utility to dynamically identify regions of non-spatial

access and temporal locality to serve as hotspots for optimization. The scalability of this data

shaping process to newer spatially adjacent data stores proposed in research literature could be

studied. The positive contributions of Data Shaping towards improving several other system
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parameters, such as memory bandwidth could be explored. Also, the effectiveness of the HD-

Trans framework in supporting performance enhancements in widely used applications, such as

the Wikimedia suite, Amazon public data sets and various social networking applications could

be studied. Also, improvements to the data collection framework in dynamically capturing

various other performance results could be explored.
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